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Commensurate-Incommensurate Phase Transitions 
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We consider one-dimensional systems of classical particles whose potential 
energy has the form: 

wo,~= ~,[,~V(x.)+ F ( x . -  x~ ~C~)] 

The limit of the Gibbs state as T--~ 0 is described in terms of invariant measures 
of two-dimensional mappings which are constructed with the help of Wa, 7. The 
dependence of these measures on parameters a, y is investigated. 
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1. PHASE D IAGRAMS OF O N E - D I M E N S I O N A L  CHAINS 
AT T = O  

We consider a model  of one-dimensional  interacting particles in an external 
periodic potential  field. A configurat ion of the min imum energy for the 
potential  of the inner interaction is a lattice whose parameters  differ f rom 
the parameters  of the exterior field. Thus  we have a competi t ion of two 
different tendencies which defines the entire phase picture of the system. 
One of the main  examples is the famous F r e n k e l - K o n t o r o v a  model  (see 
Ref. 1) which was in t roduced in connect ion with problems of  dislocation 
theory and  was discussed f rom the point  of view of epitaxy growth by  
Frank  and Van der Merve. (2) The potential  energy of  the F r e n k e l -  
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Kontorova model has the form 

W =  a E ( 1  - cos2~x,)  + E ( x ~  - x ,_  1 - 7)2 (1) 
n n 

We shall deal with a more general case. The potential of the exterior field 
will be a C Oo-periodic function V of the period 1. We assume that V has 
nondegenerate minima at the points x = n, - oo < n < oo, and nondegen- 
erate maxima at the points x = n + �89 - o~ < n < Qc and no other critical 

points. Other "generic" assumptions concerning V will be formulated later. 
A typical example is V ( x )  = a(1 - cos 2~zx). 

The inner interaction between particles acts only between the nearest 
neighbors. I t  is defined by a potential energy F ( x  - "r), where F is a C ~ 
function, F(0) = 0, F ( x )  >1 O, F " ( x )  >/ c = const > 0, and V is a parameter  
of the problem. A typical example is Ua(X)= X2+ ax 4. In particular 
Uo(x ) = x 2. We shall consider configurations of particles whose potential 
energy is equal 

W~,v = E [ a V ( x , )  + r ( x ,  - x , _  1 - 7)] (1') 
n 

where a, 7 are positive parameters. 
The models with the interaction energy (1), (1') are under discussion in 

many  papers. We can mention the paper by Pokrovsky (3) and its continua- 
tion in Ref. 4 and 5, Aubry, (6'7) Bak and yon Boehm. (s) In the present 
paper  we shall prove several rigorous results concerning the models (1'). 
Some of our arguments will be of a purely mathematical  character and 
physicists can omit them without any damage. In such cases we shall write 
a capital " M "  at the beginning and the end of the discussion. 

We shall start with the definitions of the configuration space and the 
limit Gibbs state for the model. A configuration of (1') is a countable 
locally finite subset X c R 1 such that for every x @ X its left and right 
neighbors x t, x r are defined in such a way that (I) (x r)l = x = (x t)~, (II) the 
graph X with the edges (x, x ~), (x, x l) is connected, (III)  with respect to the 
natural ordering x < x r we have lirntx = o% lim~x = - oo. 

Certainly, ( I ) - ( I I I )  do not imply that x < x r in the sense of the usual 
ordering on the line. One can say that a configuration of our model is an 
embedding of the one-dimensional graph with the nearest neighbors into 
R 1. Certainly it is possible to generalize the situation and to consider 
embeddings of graphs of a more general structure. 

A right (left) semi-infinite tail of a configuration X is a subset X ~ c X 
(X t C X )  s u c h t h a t i f x ~ X  ~ ( x ~ X  l) t h e n x  r ~ X  ~ (x  t ~ X  t) a n d t h e r e  
exists x ~ X r (x E X t) such that xtq~ X r (xrq~ Xl) .  The space of all 
configurations X is denoted by M. M. There exists a natural o-algebra | of 
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subsets of M genera ted  by  subsets of the following form:  

A = { X]  X N A o = x consists of one point ,  x "  E A s , ( x r )  r ~ m 2 

k times 

( ; ) . . .  ( X ' ) I . . ;  ~ m _  m 

m times 

where A_ m, �9 �9 �9 A0 . . . .  , A~ are Borel subsets of  the line. 
Denote  M(A0) = ( X  ~ M[  card  (X N A0)= 1}. We  can int roduce a 

part i t ion ~r(Ao) [~Z(Ao) ] of M(Ao) for  which an e lement  C~.(ao)(C~.,(~ )) of 
~r(A0)[~t(A0) ] is de te rmined  by  a semiinfinite tail X r ( X  t) whose left (right) 
end point  belongs to A o and  X n A 0 is exactly this end point.  The  corre- 
sponding a-algebras  y (r) (Ao), |  (Ao) are genera ted  by  subsets 

A = { X I X n A; = x consists of a point,  

I r) 
. . . .  , 

k times 

{ ' -  B = X I X n 2i o - x consists of a point,  

x l ~ 2 ~  i . . . .  l) 1... ~ _ , ~  

m times 

Here  A; C 2i; A 1 . . . . .  Ak, A_],  . . . ,  A m are Borel subsets of the line. 
D e n o t e  also M(A 0, zX]) = M(Ao) N M(AI) ,  |  o, A1) = |  V 

| (AL)" We  shall define probabi l i ty  distr ibutions on | Firstly we wan t  to 
make  more  precise the not ion of weak convergence  of such distributions. 
Let  ( P , } ~ ,  P be  p robabi l i ty  dis t r ibut ions on | As sume  tha t  f ( x  o, 
x~ . . . . .  x~) is a cont inuous  funct ion on R k+j with a compac t  suppor t  
equal to zero for  x o ~ A o where A o C R 1 is an open compac t  subset. We  
shall say that  P .  converge  weakly  to P if for  any  f and  x 0 = X N A o 

lim /" f (Xo,X~,  " ~ .  . . . . .  ( (x~)" (Xo)  , . , . .F]r] d P n ( X )  
n-~,oo JM(~o)~\ 

k times 

f i l l  , r (~o)f(Xo,XD,(Xo) . . . .  ( . . .  (Xo) r ,  . . )r)dP(X)M. 
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Now we intend to define limit Gibbs states for models (1'). Let us 
choose two subsets A 0, A 1 C R l, `50 N A 1 = 0 and fix semiinfinite tails X l, X r 
whose end points y t, y r  belong to A o, A l , respectively. We introduce M ( X  l, 
X r) c M(A 0, AI) consisting of X C M(A 0, ̀ 50 which have X l, X ~ as its tails. 

oo ] r It is clear that M ( X I ,  X ") = U ~=0Mk(X ,X ), where Mk(XI ,  X ~) consists of 
X for which there are k particles between y l and y r in the sense of the 
graph corresponding to X. 

Definition 1. A conditional Gibbs distribution with parameters fl 
and t* under the conditions X 1, X ~ is the probability distribution on M ( X  l, 
X ~) such that (I) P(Mo(Xt, Xr)) = exp[-  f l F ( y  ~ - y l  _ 7)]~- l (yr ,  y[; /~, 
/~) (II) for k > 0 its restriction to M~(XI ,  X ~) has the density 

- - - -  - -  V(xi )  + 2 F ( x i -  x ,_ ,  - "/) + i~k z l(yl, yr; ,8, /~)exp fl ai i=1 

Here x o = y 1, Xk +1 = Y ' ,  xi = x[-1, and ,~(y 1, y ,; fl,/z) is the corresponding 
grand partition function. The integration which is involved in the definition 
of ~ is taken over configurations x I . . . . .  x~ such that x i ~ ,5o,`51, 1 < i 
< k. Thus N depends also on `50, ̀51 but we do not denote specially this 
dependence. 

Definition 2. Limit Gibbs state with parameters fl and /~ is the 
probability distribution P on | such that for every M(h o, AI) its restriction 
to the o-algebra of subsets of M(`50,`51) has the following property: the 
induced conditional distribution on the a-subalgebra | coincides 
P a.e. with the conditional Gibbs state in the sense of the definition 1. 

As in the case of the usual one-dimensional systems of statistical 
mechanics the construction and the investigation of limit Gibbs states can 
be easily done with the help of a version of the transfer matrix. Some 
results in this direction were obtained in Filonov and Zaslavsky. (9) We 
shall give an outline of the corresponding arguments. For the simplicity we 
shall deal with the case/x = 0. Let us consider a cylinder C = S J • R ] with 
the coordinates (u, z) and introduce the kernel 

K(u,z I u ' , z ' )  = - ( u  + z ' ) )  

• exp(--  fl[ ~ V ( u ) +  F ( z ' - y ) +  ~ V(u')] } 

We look for a positive eigenfunction of the adjoint operator K* in the form 
g~(u', z')exp[ - f lF(z '  - 3,)]. Then for g~ we get the equation 

X ~ g $ ( u ' , z ' ) = e x p { - B ~ [ V ( u ' - z ' ) +  V(u')] ) 

x f exp[-3F(z-r)]gZ(u'-z',z)dz (2) 
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where )~ is the corresponding eigenvalue. The solution of (2) belongs to the 
class of functions periodic with respect to each variable with the period 1. 
Then (2) can be rewritten as follows: 

• fo tO~(z -  y)g~ ( u ' -  z ' ,z)dz (2') 

where O/~(z) = ~ o =  _ ooexp[_ flF(z + k)]. 
Also we look for a positive eigenfunction gl3(U) of the operator K, i.e., 

)~gB(u) = exp[ - fi ~ V(u) ] 

We omit the proof that the solutions of (2'), (3) really exist. These solutions 
have an important property which is described in the following lemma. 

I.emma 1. There exists a positive C~ = C1(a, 3') for which 

exp( - tiC,) < g~ (u, z), ge (u) < exp(flCl) 

Using the function gB(u) we construct a stochastic operator of the 
transition (u, z) ~ (u', z') whose kernel is equal 

QB(u,z l u',z') = QB(u [ u',z') 

• ( u ' ) [  �9 - ( u  + z ' ) )  

The stochastic operator Q defines the Markov chain whose phase space is 
C. The stationary distribution of the chain has the densityfp(u, z) = g~(u)- 
g~(u, z)exp[- f iF(z  - "/)], where the normalization is chosen in such a way 
that fc fB(u,z)dudz = 1. 

Assume that f zf~(u, z)du dz > O. The connection of the Markov chain 
with the limit Gibbs state P follows from the fact that the conditional dis- 
tribution of x r for fixed . . . .  (xt)l, xt, x is equal to Q((x)  l ( x ' } , x  r - x), 
where ( . )  is a fractional part. In other words the conditional distribution of 
x r induced by P depends only on {x), and in this sense P is a Markov 
chain. The condition f c  zf~(u, z) du dz > 0 guarantees that it is concentrated 
on 34. 

We shall write PB,~,v in order to emphasize the dependence on parame- 
ters t ,  a, y. The main problem concerns the limit behavior of P~,~,v as 
/3-+ oo. In view of the connection of Pl~,,,,,v with the Markov chain it is 
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sufficient to investigate the behavior of the Markov chain at/3 ---> oe. Let us 
introduce the space M '  of infinite sequences x ' =  {x~}3o~ = {(ui,zi))~oo, 
where x; = (u~,zs) E C. The measure on M'  corresponding to the Markov 
chain is denoted by p(m) We shall use the following lemma. 

I .emma 2. There exists K = K(a,  T) > 0 such that 

lim p(m) Zlzl K) 0 /~_+~ ~,~,r t) i) > = (4) 

Proof. In view of translation invariance of p(m) (4) does not depend 
e,a, ,I 

on i. The density of the stationary distribution has the form gB(u)g~(u,z) 
exp[ -  BF(z - ~,)]. We shall show that for a C2 = C2(a, ~), 

max ga(u ) m a x g 3 ( u , z )  
< exp(C2 fl ) (5) 

rain g~(u) ' min g~ (u,z)  

from which the statement of lemma easily follows. Let us put 

Then 

6(u) 
re(u)  

= 

s [ a"V(w)ldw here(u ) = #B(u - w - T)r/~(w)exp - 

f s , [Va~(u-  w -  T)/t~e ( u -  w -  y)] r/~ ( w ) e x p [ - f i ( a / 2 ) V ( w ) ]  dw 

fs '  re (w)exp [ - / 3 ( a / 2 )  V(w)] dw 

We shall use the inequality I~A(w)l~71(w) < c3/3 for some C3 = C3('/) 
which can be easily obtained by direct estimations. It gives 

max lnre(u ) - mjn lnre(u ) < C3fi 

Thus we have (5) for ge(u). The proof for g~(u,z) goes in a similar way. �9 

Now we introduce the transformation T O of C onto itself, which plays 
a crucial role in the further part of the paper. Namely, we put To(u, z) 
= (u', z'), where 

'~ V'(u)  F ' ( z '  - v )  = F'(z  - ~) + -ff 

U' = U + Z' 

In view of our conditions concerning F the point (u', z') is defined uniquely. 
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Let M6 c M '  be the space of trajectories of T o, i.e., the space of sequences 
x '  = { (u ,  zi)}~_~ such that (Ui+l,Zi+O -- To(Ui,Zi), - ~  < i < ~ .  

T h e o r e m  1. Let II~,v be a limit point of measures P~,~,~(m) in the sense 
of weak convergence as fl ~ oe. Then II~,~(M;) = 1. 

Remark .  In the case of lattice systems of statistical mechanics a 
similar result is contained in Dobrushin and Pecherski. (1~ 

Before proving the theorem we derive an important  corollary. 

C o r o l l a r y  1. Let  /~ be  a measu re  on C for  which / z ( A ) =  
II,~r(x'I(Uo,Zo) ~ A),  A c C. Then/x is an invariant measure for T 0. 

The statement follows easily from the translation invariance of II~,r 
and from the definition of the weak convergence. 

Proof  o f  Theorem 1. We put 

r = ( . , ,2 . , ) ,  ( . 2 , z2 )  [ u2 = Ul -.i.- z ,  , F t ( z  2 - ",{) -~- F t ( Z l  - ~ )  -.[- -~ 

E C •  

Let us take a continuous function ~((u~,zl) , (u2,z2))  with a compact  
support which is equal to zero in a neighborhood of F. We shall show that 
f ~ dII~,v -- 0. We have 

( .,,,~o,~ = c �9 dP~2),+ 5- j e ( (u , , . , ) , ( . ~ , z2 ) ) . .  B,o,. L,l,l.~l,t.,I-<~ 

In view of Lemma 2 5----> 0 as fl ~ m. The first integral can be rewritten in 
the following way: 

( % 
JIz,[, Iz=l, Iz31 < g 

= fJ.,I-<~ Kde~"s176 ,~j( ~r , .,), (.2 ,,~)) dP(B2?~ 

• ((u, ,z,), (u 2 ,z2)] (u o ,Zo) , (u 3 ,z3) ) (6) 
Let us consider in more detail the conditional distribution which enters in 
the last integral. It  follows from the definition of our Markov chain that it 
does not depend on z 0 and its dependence on /A3,z 3 follows f rom the 
equality u o + z  l + z  2 = u  3 - z  3 (rood 1). This means that u o + z  l + z  2 
= u 3 - z  3 + i for some i, [i I < 3K. The conditional distribution has the 
form 

c o n s t e x p ( - B [  F ( z ,  - ./) + F ( z 2 -  y) + ~ V ( u  o + zl)  + a V ( u  o + z I + z2)]} 

) ~ I ~ ( U  3 - -  Z 1 - -  Z 2 - -  2" 3 - -  UO) 

where const is a normalizing factor and 8 is the &function on S ~. 
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Put G ( Z l , Z 2 )  = F ( z  1 - 7) + F(z2 - 7) -t- a V ( u  0 + Zl) + a V ( u  0 + z I -t- 
z2). Here u 0 is considered as a parameter.  Let us find values of z~, z 2 for 
which G takes a minimum under the condition z~ + z 2 = u 3 - z 3 + i. De- 
note Ga(z l , z2)  = G ( z l , z 2 )  - 7t(z 1 + z2). Then 

r ' ( z ,  - 7)  + a V ' ( u  0 + Zl) + a V ' ( u  0 + z 1 + z2) - ~ = 0 

F ' ( z 2  - Y) + a V ' ( u o  + ZlZ2) - ~ = 0 

which implies F ' ( z  2 - y)  = F ' ( z  I - y)  + a V ' ( u  o + z O. In other words the 
minimal points ( u l , z O , ( U z , Z 2 ) E F .  The first equality can be used for 
finding of z I as a function of h. Then k can be found from the equation 

z ~ + z  2 = u  3 - z  3 - u  0 + i .  
Thus for every condition the minimal value of G is taken on a point of 

F. In view of compactness of the set of conditions in (6) one can find a 
small neighborhood O c C X C \ s u p p  (I) of the set F that for a 8 > 0 

6 ( Z  1,Z2) >/ ami n-l- 6, (u l ,Z l ) , (u  2,Z2) ~ C X C \ O  

From the other side for a p > 0 and the p-neighborhood O '  of the set of all 
minimal points we have G ( z l , z 2 )  < ami n q- (1/2)6,  if ( ( u l , z O , ( u 2 , z 2 ) )  E O '  
C C • C. This easily leads to 

f,~dp~!,((u,,zO,(u2,z2)l(Uo,Zo),(u3,z3))--)O as / ~ o o  

uniformly over all conditions. Thus % ~ O as fl -~ ~ .  �9 

Now we can introduce the main definition. 

Definition 3. Phase diagram of the model (1') is a function I,, v which 
maps the space of parameters  (a,Y) into the set of normed invariant 
measures of To in view of Corollary 1. 

R e m a r k .  Certainly one can consider another two-parameter families 
of interactions. An extension of Definition 3 to such cases is obvious. 

Let 9TO be the space of normed invariant measures /~ of T o, H ( u , z )  

= a V ( u )  + F ( z  - 7)  and 

h( t~) = f H(u,z)d~, ~ ~ ~ 

h,,r = min~e~h(/z) .  We recall that ~ is a closed compact  set in the weak 
topology. In the second part  of this paper  the following theorem plays the 
crucial role. 

Theorem 2. Let II.,~ be a limit point of P~,.,v ( ' )  as fl -+ 0c and/z  ~ s)L 
is the corresponding measure. Then h(/z) = h., v. 

Before proving the theorem we shall explain how we shall employ it. 
Suppose that the minimum h., v is attained on a single measure/~0. Then it 
gives immediately I.,~ = / z  o. 
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Proof. Assume that h(/~) > h~,v�9 Then /~ =/~l +/~2 where /~l, ~2 are 
mutually singular, h(/~2) = ha,v, and for #l-almost  every (u o, Zo), 

N 
lim 1 N - ~  N Y L,(r~(Uo,Zo) ) > ho.~ 

i=0  

Certainly it may happen that/~2 = 0. Take e > 0 and find 6 > 0, N > 0, for 
which the set A c C of points (Uo, Zo), where 

N 
• Z 1-I(V;(Uo,Zo)) ~ ha. + 8 N i=O 

is such t h a t / ~ ( A ) / > / q ( C )  - e and the set B c C of points (Uo,Zo), where 

N 
_ _  1 8 1 E H(r ; (Uo ,Zo) )  < ho~ + 
N i=0  

is such that/~2(B) >/ /L2(C ) - e. Let us fix a nonnegative continuous func- 
tion ep(Uo, Zo) which is equal to zero outside A and f~dl~l > 0. Now we 
construct a nonnegative continuous function q~ on C • C • �9 �9 �9 • C, 

F v 
N + 1 times 

�9 ((Uo, ~o), r0(Uo, ~o) . . . . .  r~(Uo,  Zo)) = ~ ( . o ,  Zo) 

and for all ((Uo,Zo),(Ul,Zi), . . . ,(UN,ZN))Esupp~b we have ( I / N )  
EN=oH(T~(uo,Zo)) >1 h~,v + (2/3)8. Then for any sequence of fl-~ 

f . ( (uo , zo ) , (u , , z l ) ,  . , 

---) f ~(Uo,Zo)dl.L((Ro,Zo) ) ~ ~fp(Uo,zo)d.l> O (7)  

From the other side we shall show that the integral in (7) tends to zero as 
B ~ 0o. We have 

f (~D((NO, ZO), ( g  I ,Z1) . . . .  (b/N �9 , ~ ) )  aP~,o,~ (m) 

x ((u0,z0) . . . . .  (UN,ZN) I(U ~ ,Z 1), (MN+ 1 , ZN+ 1) ) (8) 

As in Theorem 1 we can restrict ourselves by the integration over the set of 
variables, where IzA -< K, o < i < g .  Then the inner integral in (7) is not 
more than constlmax q)]" KN" e x p ( - / 3  [h~, v + (2 /3 )d ]N )  where const is a 
normed factor of the conditional distribution�9 In order to estimate const we 
remark that one can find a sufficiently small neighborhood O" of the set 

c c x . . .  x c ,  B = ( (~o ,~o ) , ( , ~ , z~ )  . . . . .  ( u N , ~ ) ) , ( u ~ , ~ ; )  
(N + 1 )  times" 

= r;(u0,~o)  
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and  (u o, Zo) E B such that  

N 
_ 1 1 y~ H ( ( u  i zi)) <. ho~ + -~8, ((Uo,Zo) . . . .  (u~ , zN) )  ~ 0 "  
N ~ , i = 0  

I t  follows f rom the explicit f o rm of the condi t ional  distr ibution that  

1 > ? ~ y ~ ( B I ( . _ ~ , ~ _ ~ ) , ( ~ + ~ , ~ N + , ) )  

> const  vol(  O " ) e x p  [ - fiN(h~, v + �89 ) ] 

Therefore  const  < [vol (O")] -%xp{[h~, r  + ( 1 / 3 ) 8 ] N ) ,  and  

constmax[O[ �9 K N e x p [ -  fi(h~,~ + 26 )N]  

m  101 

as fl --> ~ .  We conclude that  the lef t -hand par t  of (8) tends to zero while it 
mus t  stay positive in view of (7). 

2. AN ANALYSIS OF THE PHASE DIAGRAM IN A CONTINUUM 
LIMIT 

In  the last two sections we shall consider the case of small a and  
F ( x )  = (1 /2 )x2  + a F 3 ( x / ~  ). The  second te rm is considered as a small  
per tu rba t ion  of the quadra t ic  potential .  W e  assume that  F1(0 ) = 0, Fl(X ) 
> 0 for x :~ 0, F[ '  >/ - c  > - 1  for some c > 0. Let  us make  the change of 

variables  z - 1 = ~ - Z ,  u = U, and  put  7 - 1 = ~ - F .  In  new variables  the 
t rans format ion  T O takes the fo rm 

V ' ( V )  Z '  + F ~ ( Z ' -  F) = Z + F { ( Z -  r )  + 
(9) 

U ' =  U + ( - d Z '  ( m o d  1) 

Assume  that  a is small. Then  (9) can be considered as a difference 
approx ima t ion  with the t ime step At = fa- of the system 

dU _ Z, dZ  _ V ' ( W )  
art dt 2 + 2 F i ' ( Z  - F) (10) 

The  system (10) has  the first integral  %0 = - V ( U )  + Z 2 + 2 Z F { ( Z  - F) - 
2 F I ( Z  - I'). The  func t ion  G ( Z )  = Z 2 + 2ZF ~(Z  - F) - 2 F l ( Z  -- F) is 
strictly m o n o t o n e  for  Z > 0, Z ( 0, because  G ' ( Z )  = 2 Z  [1 + F~'(Z - F)]. 
Thus  for  every cons tant  k the equali ty G ( Z )  = k + V(u) defines two curves 
Z = ~k (U). For  k o = G(0) these curves pass through the fixed point  (0, 0) of 
the system (10) and  in fact  are its stable and  unstable  separatrices.  For  
k < k o the curves s  ( U )  are two parts  of a closed curve s (U) ,  while for 
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i 

I 
I 

0 0 

Fig. 1. 

k > k 0 these curves are different closed curves on the cylinder C. The form 
of all curves is similar to that one for F~ = 0 and is drawn on Fig. 1. 

Ergodic invariant normed measures for the system (10) are concen- 
trated either on s  k v a k0, or on s k < k 0, or at the point (0, 0). We 
shall denote them by/z~+_,/tk, or/~(0), respectively. 

Let us recall that the energy per particle which enters Theorem 2 
has the form ( a / 2 ) V ( u )  + (z - 2/)2/2 + aFl[(z - y ) / ~ - ]  = a ( )  V(u) + 
� 8 9  2 + E l ( Z - F ) ) .  We put  H ( c ) ( U , Z ) = � 8 9 1 8 9  2 +  

F I ( Z -  F) and for each invariant normed measure bt of the system (10) 
h(~)(#) = fH(c ) (U ,Z)d I~ .  Let be also h(r c) = min~h(c)(/~). The following 
definition is an analogy to Definition 3. 

Definition 3'. The phase diagram of the system (10) is the function 

~- : r ~ I r  = { t~ i h(rC~ = "(~'(c~ }. 
We shall investigate the phase diagram in more detail. Firstly we 

consider the case when F I = 0. Then h(C)(/~ (~ = �89 "2 in view of V(0) = 0. 
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For k < 0 

Sinai 

h(C)( ~ )  _ h(C)r /o ) )  = f [  ~ V ( V )  + ~Z 2 - rz] d~ 

because f Z dg k = 0 due to d r = T - l ( k ) d t ,  where T(k )  is the period of 
motion along ~k, Z d t  = dU, and fe,  d U = O .  Thus h(O(l~k)--h(C)(/~ (~ 
> 0 for k < 0 and such gk never belong to the range of ~-. 

For  k > 0 it is meaningful by the same reason to consider only the 
curves e~-. We have again 

and dlz k = T - l (k  + ) dt = Z - 1T - l (k  + ) dU. It gives 

( l f z d t  = l f d u =  1 (11) a Zdl tk= T ( k  + ) r ( k  + ) T ( k  + ) 

From the equality Z 2 = k + V(U) we get 

~ f [ v(v) + Zq~.k= f z2d~k- ~=E r(k+) l-' f z2~,- ~k 

= [ r(k  + ) ]- '  f o 'ZeV-  ~k 
1/2 

=[r(k+)]-'fo',/[k+ V(V)] eV--~k 
It is easy to see that r ( k  + ) = f~[k + V( U)]-~/2 dU and 

h ( k )  = h(~)( ~,~+ ) - h(~)( l,(~ 

}(So 1- 
1/2 1[ k + 1 = l i [ k  --t- V(U)] dU g(u)]-1/2dU 

- '  

1 dh ( fl,ol[k+ V(U)]1/2dU_ F} d (s " - - - ~  g(g)]l/2dU} - 

One can easily see that (d /dk ) { f~[k  + V(U) ] -1 /2dU) -1  > O. 

Therefore (1) for r < ro = flo~/[ V(U) ] '/2dU the derivative dh/dk > 0 for 

k > 0 and d h / d k l k =  o > O, i.e., mink>oh(k)  = h(O) = limk_,oh(k ) = O. 
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Fig. 2. 

(2) For  F > r o mink>~0h(k ) = h(k(F)), where k(F) is the solution of the 

equation fl~/[k + V ( U ) ]  '/2dU= V. In this case ~(F)=/~k+~r). 

Different cases are drawn on Fig. 2. 
Returning to the case F l =/= 0 but for F 1 sufficiently small we can 

formulate the following result. 

Theorem 3. Let us fix an interval [0,FI] where F 1 > F o. One can find 
c I > 0 such that if IFl(x)], [(d~/dxi)Fl(x)l < c 1, 1 < i < 3, then there exist 
~o = Po(F1) ~ [0, r l ]  for which if(F) =/~(o) if 0 < I" < Fo and a continuous 
increasing function k = k(I'), Fo < r < I" 1 such that for these F we have 
~-(V)  = t*~+. 

An explicit expression for Fo(F1) is rather complicated. Namely, F0(Fl) 
is the solution of the equation 

[~ { V(U)-  ZFI(Z- F) + (3 /2 ) [  FI(Z- r ) -  F~(-F)] } dg 
F J0 Z 
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where Z ( U )  = Z >1 0 is found from the equation 

Z 2 + 2 Z F ~ ( Z  - F) - 2FL(Z  - F) + 2 F x ( -  r )  = v ( u )  

Sinai 

3. AN ANALYSIS OF THE PHASE DIAGRAM FOR (~ > 0 

We return to the mapping T O [see (9)] for positive but small a. Our aim 
is to find Yo = yo(a) > 1 such that 1 < yo(a), yo(a) - l~Fo,/-a and I (a ,  y) 
=/~(o) for 1 < 3' < 3'o(a), while I (a ,  3') v ~ ~(0) for y > y0(a). The construc- 
tion of yo(a) is based on the notion of the homoclinic point. 

The point (0, 0) = O is a fixed point of the transformation T 0. Under 
the conditions of Theorem 3 it is a hyperbolic fixed point and thus has 
stable and unstable separatrices. Let us denote by y~), 3'(+u)(3'~), 3'(_,)) parts 
of these separatrices one of whose end points is O, while another end points 
belong to the half-line U --- 1 Z > 0 (Z < 0) (see Fig. 3, points G (') c(") 

We construct T o x3'~), To  ~y~) and intersections To- ~3'~) N 3'(+"). Gener- 
ically this intersection consists of a finite number of points. The trajectory 
of each of these points tends to zero as n---> +_ ce. The points with this 

0 

6 

0 

U :0 U :~ 

Fig. 3. 
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property are called homoclinic points (see, e.g., Ref. 11). Assume that 
AoE  To1~,~ ) Ay~+ u~ and Ak = T~Ao, - ~  < k < ~ .  Let us introduce 
7~(0)  C To1~,~) (77) (0) C T07~+ ~)) whose end points are A 0 and A 1. If 
7~+s)(0) A 7~")(0) v ~ 13 then it consists of an odd number of points. Suppose 
for the sake of simplicity that 7~)(0)rq 7~u)(0) consists of three points 
Ao,Bo,A 1. We shall investigate the properties of 7~)(0), 7~_u)(0) in more 
detail. The analysis depends on the assumption that 

2 v'(v)R 

- R2[1 + Z F ~ " ( Z  - Fo)  - F ( ' ( Z  - F0)]) dtv ~ 0 (12) 

Here R ( U , Z )  = V'(U){2[I + F ( ( Z  - F)]} -~, U(t) = U, Z( t )  = Z > 0 is 
the solution of (10) for F = F0(Fl) tending to zero as t ~  _+ ~ .  The integral 
in (12) is an analogy of the well-known Melnikov-Arnold integral in our 
case (see Refs. 12 and 13). We remark that S = 0 if F 1 = 0. This fact is the 
reason why we added F~ in the expression for F. It is easy to show that the 
distance between the points G (u) and G~+ s) is equal to S ~  + O(a) as a ~ 0. + 

Also homoclinic points are the points of intersection of the stable and 
unstable separatrices of the point O. It is easy to show that if S ~ 0 then 
the angle between u and "y(") at the points Ao, Bo,A ~ is const ~ + O(a), 
where const :/: 0. Now we can formulate explicitly the criterion that l (a ,  "y) 
=/~0),  which is the main result of this paper. It was proposed earlier in 
Refs. 3 and 6 based on the physical considerations. For the points A0, B 0 
we write the following equations for ~7, ~ > 1: 

Here (G ,  Z~), (Ui,, Zs) are the coordinates of the points T;Ao,~ T[~Bo,~ - ce 
< i < ~ .  

t.emma 3. ( 7 -  1)~F0(F1),~-, (~,-  1)~F0(F1)~- as a--->0. 
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The statement of the lemma follows easily from the fact that 7(+ "), ,/~) 
tend to the separatrices of the system (10), while the sums in  (13'), (13") 
tend to the corresponding integrals. We put ,/0(a) = min(~, ~) and suppose 
that all assumptions formulated above are valid. 

Theorem 4. For small enough a, 
(1) I ( a , 7 ) - / z ( ~  if 1 ~< y < 7 0 ( ~ ) ,  
(2) I (a ,  7) =~ ~(o) if 7 > 7o(a) �9 

Proof. Firstly we shall prove (1). Assume that 7 < 7o(a) and B ~/~(0) 
is an ergodic invariant measure for T 0. We shall show that for ~-almost 
every point (U  0, Zo) the following inequality is valid: 

lim 1 V ( U ~ ) + ~ Z i  + F , ( z , - r ) - e , ( - r )  (14) 
n-+oo n i=0 

It is equivalent to the statement of the theorem because it means that 

f f'~[ -~ V(U) "~ I Z2 - ~Zq- FI(Z - ~) - F I ( - F ) J  d . 

- 1 

Cg 

- 

_ 1 [ h ( . )  - h ( r 1 7 6  > 0 

Our proof is based upon the following construction. Let ~o be the 
vertical segment of the length 2r within the centrum at ( U  o, Zo) -- A o. For 
i > 0 we define the curves | T~lo is the centrum of ~ ,  the length of Y~i 
is equal 2r, and To~ j D ~i+ 1. In the same way we c_onstruct ~i  for i < 0, 

for which T~A o C ~-D i C To- 1~---~i+ 1 and similar curves ~i  passing through the 
points ; T~Bo, - oo < i <  oo. Also we construct two vertical segments | 1, @2 

between @o,| and | respectively, in such a way that the distances 

between | @2 and | | | were of the same order (see Fig. 4). KAM  
theory is applied to our case and it gives the existence of invariant curves 
~"~) above 7(+ "), "y(~), ~(inv) below ,/(_ u), ,/~) and ~(inv) between them (see Fig. 
3). In particular these curves can be chosen arbitrarily close to the sep- 
aratrices of the system (10) provided a is sufficiently small. We denote 00 

~(inv) ~(inv) the domain bounded by @0, | and the parts of the curves + , . 
We consider the most difficult case when the measure /z is concen- 

trated in the domain bounded by ~(~), ~(i~), and s Let us fix a 
neighborhood Q of the fixed pont O not depending on a. Each trajectory of 
T o which is not a homoclinic one enters Q infinitely many times and then 
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i 
,4~ <2Y 

~o 
Fig. 4. 

-.I- 

Aj. 

Fig. 5. 
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goes out of it. During each visit of Q it intersects one of four coordinate 
segments in Q having O as an origin. Let us denote 0 < i I < i 2 < �9 �9 �9 < i, 
< . - .  the successive moments of these intersections. It is obvious that 
each i, can be of one of the following types (see Fig. 5): 

I type: Z,; > O, U,; < O, U~+, > 0 
II type: U~, < O, Zi, > O, Z,;+. < 0 

III type: Z,; < O, U~ > O, Uis+l < 0 
IV type: U~ > O, Z,; < O, Zis+, >1 0 

The segment i, < i < is+ 1 is the segment of kth type if i s has the kth type, 
k = I, I I ,  III, IV. We shall denote the type of the sth segment as k s. A 
segment of the IVth type can follow after segments of the U and III types, 
a segment of the type I can follow after segments of the types I and IV, a 
segment of the type II can follow after segments of the types I and IV, and 
a segment of the third type can follow after segments of the types III and 

II. Also from the equality Ui+ 1 - U,. = ~/a Zi+ 1 w e  get 

is - - V i  i 
E zi= ,s u, - -  ~_ s s -  

where G = 1 in the case of the I and IV types and - 1 in the other cases. It 
shows that in the sum (14) 

_ 1 ~ E ~, 05) lira 1 Zi= lim -:- 
n---~oo /,/ i = 1  s---~ I s p=O 

we put W ( U , Z )  = (�89 V ( U )  + �89 2 + [Fl (Z - F) - F1 ( -P ) ]  ) and N o w  

write 

E = E [w(g,,z ,)-rz,]= E [wtg,,zi)-rz,] 
i = 0  i = 0  

lt+i It+2 

-{" E E W (  U-i , Z i )  + E E 
t :kt=I,kt+l=Ii=it+l t :kt=I,kt+l=IIi=it+l 

lt+2 

+ E E w(u,,z,) 
t :kt_l=II,kt=IV,kt+l~II i = i r + l  

+ E [ E w(v, ,z,)-r]  
t :kt_l=IlI,k~=IV,kt+l=I i=it+l 

' ] 
+ , :  ~,_,=n,k,=m L ~=~+1 W ( G ,  z~) + r 

+ E E w(u,,z,) + r 
t :kt_l=III,kt=III i~i t+l  

w(u~, z~) 
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Under  our conditions on F 1 the inner sums in the third, fourth, sixth, and 
seventh sums are strictly positive, i.e., are more than a const. The first sum 
does not depend on s and can be neglected. Concerning the fifth sum our 
analysis will show that it can be done arbitrarily small provided a, Q, and 0 
are sufficiently small while the previous sum ~=+,_,+1W(Ui,Z+) + F is 
always more then a const. Thus the sum of all terms except the second one 
is positive and we have to consider only the expressions 

it+l 

Z < ' ) [w(u , ,z~)]  - r 
/=it+ 1 

for the case k t = 1, kt+ 1 = I.  
It  is convenient to change the summation index and to suppose that i 

changes between i -  < 0 and i + > 0, i + - i -  = it+ 1 - ~ and for i = 0 the 
point (Uo, Zo) E 0 o. Also we assume that (Uo,  Zo)_ lies between T~ o and | 
If  (Uo, Zo) lies between @1 and | (~ and | we shall compare its 
trajectory with the trajectory of B 0 (A 1); see below. Under  the conditions of 
the theorem 

w(e , ,Z) - r  >0 
i~ --0r 

We shall show that 
i + 

- ~ W(~. ,~)-  Z W ( ~ , ~ ) > 0  (16) 
i > i  + i < i -  

which obviously leads to the statement of the theorem. We shall use the 
notation Y = Z + F ~ ( Z  - F) and the equalities which follow partly from 
the definition of T o [see (9)]: 

v(~)-  v(~)= v,(~)(~- ~) +~v,,(~)(~- ~)2 

+ R,(')(~ - ~.)3 

v , ( ~ ) -  v , (~ )  = v , , ( ~ ) ( ~ -  ~ )  + Ri<2)(u,- ~)2 (17) 

v'(~.) : 

[ v,(~)- v,(u,)](u/- ~ ) -  R/)(u~ - c/) ~ 

2 2 y ~ ( Y / + I - -  Y/), Ue(Ui)-'~ ~ (  i+l--  }ft') 
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Here [Ri (1) 1, }Ri(2)  I ~ const. Now we can write 

i + 

i + 

=ix . {l[ ~(~)_ ~(~/] + (~,- z /z  

+ ~(z,- z2)~+ F,(Z,- r)- F,(2~.- r)} 
i + 

= _  ~v(v,)(ui-~,)+~v (u,)(v,-~)~+ - 

+ l ( Z  i -  ~ ) 2 F , ( Z i -  F )+  F , ( ~ . -  F)] + E (3, 

i + 

= ix [( , /~)(~+,-  ~)(~,- v,)+ ~[~,(u,)- ~,(v,.)](u;- v,.) 
+ ( Z i _  ~.)~.  + l (Z i  - ~ ) 2 +  F , ( Z i - F ) -  F , ( ~ - r ) ]  

+ Z(3) _ Z(4) = Z ?  ) + Z(3) _ ~(4) 

Here X (3) = Y, Ri(l)(ui -- ~)3, X(4) = �88 _ ~)3 and will be treated 
as remainder terms. We continue now the analysis of y,~2) : 

i+ ( 1 
~ 2 )  = . X  - 1  = , ~ - -  ( Y / + I  --  ~)(Ui-Ui)'l'l[Vt(Oi)-V:(Ui)](Ui-Ui) 

+ (z,- Z)g + ~(zi-  zi)~+ F,(Zi- r)- F,(g- r)) 
i+[ 

= _2 1 v , (v ,_ ,  ~,_ - v , + ~ , )  
i = ' -  ~ - ~  - -  1 

1 (Yi+ - Y i - Y i + , + Y i )  +~--~ , 

• ~)+(z , -  ~)~ + ~(zi- z2) ~- 

+ F , ( Z , -  F) - F , ( ~  - I') ] 

-- -- I Y/- ( U/- _ -- U / - - l )  1 yi++l(U/++t - Ui++ 1) - ~ 1 +,/-d 
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The first sum is denoted by Y~(2 2). We have 

' + [  1 (v, . -  ~ ) ( ~ . -  ~ -  ~. ~ + o,._,) 

- - + F I ( Z  i -- r )  -- F , ( ~  -- r )  ] +(z, + �89 

l ( ~ + + _  v ,++ , ) (~+-o ,+ )  

1 (~ - r ;  )(u, _,-~,._ ,) 
+ 2~- 

The sum in the last expression is denoted by Y~ 3). The final step is the 
following: 

i + 
Y4 ~ = E 

i=i- 

i + 

= E  
i=i- 

F I ( Z  i - 1 ' ) -  F I (  ~ - F ) -  F~(Z~- r)(z~ - ~ )  

+ I ( Y  i -- Y i ) ( Z i - -  ~ ) - ~  l ( Z i - -  ~ )  2] 

F, tZ i - F ) -  FI(~.  - I ' ) -  F~(~-  F)(Z i - ~ )  

i+ 
= E R?~(z, - ~)3  

Here [Ri(3)[ ~< maxz]F{"(Z)[ <. const and the last expression is also a 
remainder term. Finally we get 

- 1 v~++l)(~+ ~+) ~,~1) = ~ v ,++ , (~++ , -  ~++,) + ~ s  ( y , . + , -  

1 ~ - ( ~ - _ ,  - v~-_l) + 2--~s (r;- - ~ . - ) (~ -_ ,  - ~.-_~ ) 

+ ~(3) -- ~'](4) ..[_ ~(2) -- E W ( U / , ~ )  - E w ( ~ . , ~ )  
i>i + i<i-  

We shall show that the first four terms are in a sense larger than the others. 
It is easy to see that ]E(3)1, [2(4)[ < const a -1/2[ Uo _ ~013, Z(32)/> _ eonst 
a -  1/2[ Uo _ 0o[3. We shall use the estimations which follow easily from the 
fact that O - (0, 0) is a hyperbolic fixed point of To: 

dy(S)) = - R [ I +  O ( ~ - ) ] ,  dT(~) ] R [ I +  
~v ~=o d v  ~=o = o ( a ) ]  
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Fig. 6. 

where R = (V"(0){211 + F( ' ( -F)])  -1. The transformation T o is a hyper- 
bolic rotation with the expansion coefficient (1 + Rf~  + O(a)) along ~,(u) 
and with the contraction coefficient (1 - R~s + O(a)) along ~,(s). 

This leads to the following conclusions (see Fig. 6): 

- , -  z , -  ~ - Zi+ 1 - -  Z i + + l ~ Z i  +, - ~ l Z i _  

v~++~- g + + , ~ -  E+-R  l~+ 

U / - _ I -  g / _ I ~ U / - ~ R - I ~ -  

o;,, Using all Also we denote maxlzt~<2r,[F~(Z)l = ~-'l, maxlzl<2r,F('(Z)= ol.  
relations we can write 

1 ~ Y/++I(Ui++, - ~++1) Jr" 2-~--(Yi§ - ~-++,)(Ui+ - ~ + )  

+ - -  + F I ( - F ) Z i +  + 
year 4v~-R ~/-aR 2v~-R 

_ 1 5  Z~++ 1 F ; ( - r ) . Z ~ +  1 F~(_r)Z~+ (18) 
4~-R f a r  2~-R 
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From the other side 

~2 1 � 8 9  + � 8 9  F,(25 - r) - f , ( - r ) ]  
i > i  + 

= 2 IIV"(~189 2+ F;(-F)~+�89 2+ "'" i 
i > i  + 

The last sum can be estimated easily from above by the expression 

V"(0) ~.2+ + 1 ~2+ + F ~ ( -  F ) ~ + .  __1__1 + const ov,,,~2 
4Rf~  2Rfa- R f ~  Rfa- (~-{ + ~' J~'+ (19) 

Here const in the last term tends to a finite limit as ~ ,  ol ~ 0. Thus it can 
be considered as an absolute constant. Now we replace (19) by an equiva- 
lent expression 

v"(0) + 1 1 = Z5 2+ + F { ( - r )  Z~+ const(Oy~ + oy~,) .~2+ 

4R 3 - - ~ a  2R~-  j Rye- + R~a" 

We remark that 

, 7 4R3~-~ 2R~-~  2R~~ ~ + l = 1 + F( ' ( - r )  (20) 

If ~1, ~1 are sufficiently small than for sufficiently small a the difference 
between (18) and (20) is not less than 

�9 ( 1  - ~ - ) 2 ~ +  
4R/g 

where 6y ~ 0 as oy{, ~-,, ~'i -->0. 
In the same manner we can treat the terms containing U~, ~ ,  Z~, ~. for 

i < i - .  As a result we get 

]~(1) >/ 1 (1 -- ~-)~2+ + ! (I -- ,y)~.2_ __ cons___! i u  ~ _ U0f3 (21)  
4 ~ - R  4 ~ - R  ~-  

The value of Zi+ (Zi-) depends on the distance between (Uo, Zo) and 
~,(~)(~,(u)) (see Fig. 4). Assume that Z = q)(')(U), Z = ~5 (u) (U) are functions 
which define 7(s),y (u) in 0. We put A (s) = Z o - q)(~ A (u~ = Z o - 
q~(")(Uo). For the segments of the type I we have 4 (,) > 0,4 (") > 0. It is 
easy to show that Zi2+~constA ('), Zi2-~constA ("). The angle between 
7 ('), 7 (") at their points of intersection is not less than const ~ -  (see above). 
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Therefore max(A('), 2x(u)) > consh/-s U o - Uol. Finally we get [see (21)] 

E( 0 > const max(A(~),A(~))_ cons____At [U ~ _ ~ o 1 3  

4fffR f~- 

>___~const [U ~ _ ffol const~ I U ~ _ ffol3 

-- [Uo-  fol( c~ c~ IUo-  fol2 ) 
4R Vr~ 

Now we remark that [U o - fro[ < const~- because the distance between A o 

and A, is of order ~-.  Therefore the last expression is not less than 

I U ~  if~ c~ 4R const~-) > 0 

for sufficiently small a. 
For other measures/~ the statement of the theorem follow easily from 

its validity for a = 0. 
Now we pass to the second statement of the theorem. According to the 

Poincar6-Smale-Shilnikov theorem (see Ref. 11) in small neighborhoods of 
A 0, B 0 there exist periodic points which make one turn around the cylinder 
C, i.e., ~(Ui++, - -  Ui+ ) = 1. For such trajectories the sum 

E [ V(Ui) + Z; 2 + F~(Zg-F)- F , ( - F ) ]  - 2r 

tends to the similar sum for the homoclinic point and therefore will be 
eventually negative in view of conditions of the theorem. Let/~ be a normed 
measure concentrated on this periodic trajectory. Then h(/~) - h(/~(o)) < 0. 
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